想要探索铝合金型材高压锅炉管品质商家的奥秘吗?不妨点击这个产品视频,它将带您走进一个精彩绝伦的世界,让您对产品的每一个细节都了如指掌。
以下是:铝合金型材高压锅炉管品质商家的图文介绍
恒永兴金属材料销售 有限公司是专业 江西宜春流体管解决方案提供商,公司拥有业界专业度、品牌号召力、用户数量等诸多方面优势。公司不断追求技术的突破创新,公司一直以服务社会为己任,不断开拓进取,追求科技创新,以用户成功为目标,为社会的发展贡献力量。于此同时,公司积j i进行 江西宜春流体管新产品的研发,满足用户多元化的需求。
轮圈,是轮胎内廓支撑轮胎的圆桶形的、中心装在轴上的金属部件。二、按材质分类:轮圈按照材料主要分为铁轮圈和轻合金轮圈,而轻合金轮毂又以铝合金与镁合金产品为主。在今天的汽车市场中,铁制轮圈已不多见,大多数车型使用的都是铝合金轮圈,铝车轮。制造铝制轮圈所使用的铝合金材料包括A356、6061等。其中,A356被铸造铝制轮圈大量选用。A356铝合金具有比重小,耐侵蚀性好等特点,主要由铝、硅、镁、铁、锰、锌、铜、钛等金属元素组成,铝占92%左右,是一种技术成熟的铝合金材料。制造铝合金轮圈的原材料A356铝锭↑↑三、铝合金轮圈生产工艺:铝合金轮圈比钢轮圈更适合乘用车,目前其制造工艺基本可分为三种, 种是铸造,目前大多数汽车厂商都选择使用铸造工艺。第二种是锻造,多用于高端跑车、高性能车以及高端改装市场。第三种较为特别,是*先由日本Enkei公司投入使用的MAT旋压技术,目前此技术在国内的应用不如前两种多。1、重力铸造法:重力铸造简单的说,主要是靠铝水自身的重力来冲填铸模,是一种较为早期的铸造方法。该法成本低、工序简单且生产效率高,然而,浇注过程中夹杂物易卷入铸件,有时还会卷入气体,形成气孔缺陷。重力铸造生产的轮圈易产生缩孔缩松且内部质量较差,此外,铝液流动性的限制也有可能导致造型复杂的轮毂良品率低。因此,汽车轮圈制造业已经很少使用该工艺了。2、低压铸造法:低压铸造是铝液在压力作用下充入模具,在有压力的情况下进行凝固结晶的工艺。同样的情况下,与重力铸造相比,低压铸造轮毂内部组 织更为密实,强度更高。此外,低压铸造利用压力充型和补充,极大简化浇冒系统结构,使金属液收得率可达90%。目前低压铸造已成为铝轮圈生产的 工艺,国内多数铝合金轮圈制造企业都采用此工艺生产。但低压铸造法也有其缺点:铸造时间较长,加料、换模具耗时长,设备投资多等。 3、锻造法:热锻(Hot forging)→RM锻造(RM forging)→冷旋压(Cold spinning)→热处理(Heat treatment)→机加工(Machine work)→喷丸处理(Shot blast)→表面处理(Surface finishing)锻造是固体到固体的变化,通过拍、压、锻等手段来形成轮毂样式,这个过程不会发生液相变化,都是固体变化。所以它的力学性能比铸造要高,具有强度高、抗蚀性好、尺寸精 确等优点。晶粒流向与受力的方向一致,因此强度、韧性与疲劳强度均显着优于铸造铝轮圈。同时,锻造铝轮毂的典型伸长率为12%~17%,因而能很好的吸收道路的震动和应力。另外,锻造铝轮圈表面无气孔,因而具有很好的表面处理能力。但是,锻造铝轮圈的*大缺点是生产工序多,生产成本比铸造的高得多。虽然锻造轮圈的性能更好,但汽车厂商在大部分车辆上还是主要使用铸造轮圈,只有少部分豪华车配备锻造轮圈。不过国内轮圈制造龙头企业中戴卡已成功进入乘用车锻造轮圈生产线并将锻造轮圈的成本压缩到了千元,并已经开始作为原配轮圈供应国内合资厂。4、挤压铸造法:挤压铸造也称为液态模锻,是集铸造和锻造特点于一体的工艺方法——将一定量的金属液体直接浇入敞开的金属型内,通过冲头以一定的压力作用于液体金属上,使之充填、成形和结晶凝固,并在结晶过程中产生一定量的塑性变形。优点:充型平稳,金属直接在压力下结晶凝固,所以铸件不会产生气孔、缩孔和缩松等铸造缺陷,且组 织致密,机械性能比低压铸造件高且投资大大低于低压铸造法。缺点:与传统锻造产品一样,需要铣削加工来完成轮辐的造型。日本已有相当部分的汽车铝轮毂采用挤压铸造工艺生产,从浇注金属液到取出铸件整个过程都由计算机来控制,自动化程度非常高。目前世界各国都把挤压铸造作为汽车铝轮圈生产的方向之一。5、特种成型:旋压技术:旋压技术*先在日本投入使用,严格而言还应算是铸造中的一种,指的是在轮圈整体铸造出型后再利用专用设备对受力处进行旋转加压处理,使得被处理位置金属内部分子排列发生改变,具体的分割面相比起一般铸造产品呈现密度更高的纤维状,从而改变整体金属力学的工艺方法。旋压技术制造的轮圈的质量、强度、延伸性等特性都已接近于锻造轮圈,且现对于锻造轮圈来说,更易生产。总的来说,MAT旋压技术既可相对保证轮毂制造成本,同时还可使铸造轮圈打造出与锻造轮圈相近的重量和强度。只是国内技术不成熟,成本较高,故应用不多。
铝及铝合金焊丝的选择主要根据母材的种类,对接头抗裂性能、力学性能及耐蚀性等方面的要求综合考虑。有时当某项成为主要矛盾时,则选择焊丝就着重从解决这个主要矛盾入手,兼顾其它方面要求。一般情况下,焊接铝及铝合金都采用与母材成分相同或相近牌号的焊丝,这样可以获得较好的耐蚀性;但焊接热裂倾向大的热处理强化铝合金时,选择焊丝主要从解决抗裂性入手,这时焊丝的成分与母材的差别就很大。
常见缺陷(焊接问题)及防止措施1、烧穿---产生原因:a、热输入量过大;b、坡口加工不当,焊件装配间隙过大;c、点固焊时焊点间距过大,焊接过程中产生较大的变形量。防止措施:a、适当减小焊接电流、电弧电压,提高焊接速度;b、大钝边尺寸,减小根部间隙;c、适当减小点固焊时焊点间距。2、气孔---产生原因:a、母材或焊丝上有油、锈、污、垢等;b、焊接场地空气流动大,不利于气体保护;c、焊接电弧过长,降低气体保护效果;d、喷嘴与工件距离过大,气体保护效果降低;e、焊接参数选择不当;f、重复起弧处产生气孔;g、保护气体纯度低,气体保护效果差;h、周围环境空气湿度大。防止措施:a、焊前仔细清理焊丝、焊件表面的油、污、锈、垢和氧化膜,采用含脱氧剂较高的焊丝;b、合理选择焊接场所;c、适当减小电弧长度;d、保持喷嘴与焊件之间的合理距离范围;e、尽量选择较粗的焊丝,同时增加工件坡口的钝边厚度,一方面可以允许使用大电流,公众号:焊王,另一方面也使焊缝金属中焊丝比例下降,这对降低气孔率是行之有效的;f、尽量不要在同一部位重复起弧,需要重复起弧时要对起弧处进行打磨或刮除;一道焊缝一旦起弧要尽量焊长些,不要随意断弧,以减少接头量,在接头处需要有一定焊缝重叠区;g、换保护气体;h、检查气流大小;i、预热母材;j、检查是否有漏气现象和气管损坏现象;k、在空气湿度较低时焊接,或采用加热系统。3、电弧不稳---产生原因:电源线连接、污物或者有风。防止措施:a、检查所有导电部分并使表面保持清洁;b、将接头处的脏物掉;c、尽量不要在能引起气流紊乱的地方进行焊接。4、焊缝成型差---产生原因:a、焊接规范选择不当;b、焊枪角度不正确;c、焊工操作不熟练;d、导电嘴孔径太大;e、焊丝、焊件及保护气体中含有水分。防止措施:a、反复调试选择合适的焊接规范;b、保持合适的焊枪倾角;c、选择合适的导电嘴孔径;d、焊前仔细清理焊丝、焊件,保证气体的纯度。5、未焊透---产生原因:a、焊接速度过快,电弧过长;b、坡口加工不当,装备间隙过小;c、焊接规范过小;d、焊接电流不稳定。防止措施:a、适当减慢焊接速度,压低电弧;b、适当减小钝边或增加根部间隙;c、增加焊接电流及电弧电压,保证母材足够的热输入能量;d、增加稳压电源装置e、细焊丝有助于提高熔深,粗焊丝提高熔敷量,应酌情选择。6、未熔合---产生原因:a、焊接部位氧化膜或锈迹未干净;b、热输入不足。防止措施:a、焊前清理待焊处表面b、提高焊接电流、电弧电压,减小焊接速度;c、对于厚板采用U型接头,而一般不采用V型接头。7、裂纹---产生原因:a、结构设计不合理,焊缝过于集中,造成焊接接头拘束应力过大b、熔池过大、过热、合金元素烧损多;c、焊缝末端的弧坑冷却快;d、焊丝成分与母材不匹配;e、焊缝深宽比过大。防止措施:a、正确设计焊接结构,合理布置焊缝,使焊缝尽量避开应力集中区,合理选择焊接顺序;b、减小焊接电流或适当增加焊接速度;c、收弧操作要正确,加入引弧板或采用电流衰减装置填满弧坑;d、正确选用焊丝。8、夹渣---产生原因:a、焊前清理不彻底;b、焊接电流过大,导致导电嘴局部熔化混入熔池而形成夹渣c、焊接速度过快。防止措施:a、加强焊前清理工作,多道焊时,每焊完一道同样要进行焊缝清理;b、在保证熔透的情况下,适当减小焊接电流,大电流焊接时导电嘴不要压太低;c、适当降低焊接速度,采用含脱氧剂较高的焊丝,提高电弧电压。9、咬边---产生原因:a、焊接电流太大,焊接电压太高;b、焊接速度过快,填丝太少;c、焊枪摆动不均匀。防止措施:a、适当的调整焊接电流和电弧电压;b、适当增加送丝速度或降低焊接速度;c、力求焊枪摆动均匀。10、焊缝污染---产生原因:a、不适当的保护气体覆盖;b、焊丝不洁;c、母材不洁。防止措施:a、检查送气软管是否有泄漏情况,是否有抽风,气嘴是否松动,保护气体使用是否正确;b、是否正确的储存焊接材料;c、在使用其它的机械清理前,先将油和油脂类物质掉;d、在使用不锈钢刷之前将氧化物掉。11、送丝性不良---产生原因:A、导电嘴与焊丝打火;b、焊丝磨损、喷弧;d、送丝软管太长或太紧;e、送丝轮不适当或磨损;f、焊接材料表面毛刺、划伤、灰尘和污物较多。防止措施:a、降低送丝轮张力,使用慢启动系统;b、检查所有焊丝接触表面情况并尽量减少金属与金属的接触面;c、检查导电嘴情况及送丝软管情况,检查送丝轮状况;d、检查导电嘴的直径大小是否匹配;e、使用耐磨材料以避免送丝过程中发生截断情况;f、检查焊丝盘磨损状况;g、选择合适的送丝轮尺寸,形状及合适的表面情况;h、选择表面质量较好的焊接材料。12、起弧不良---产生原因:a、接地不良;b、导电嘴尺寸不对;c、没有保护气体。防止措施:a、检查所有接地情况是否良好,使用慢启动或热起弧方式以方便起弧;b、检查导电嘴内空是否被金属材料堵塞;c、使用气体预清理功能;d、改变焊接参数。
常见缺陷(焊接问题)及防止措施1、烧穿---产生原因:a、热输入量过大;b、坡口加工不当,焊件装配间隙过大;c、点固焊时焊点间距过大,焊接过程中产生较大的变形量。防止措施:a、适当减小焊接电流、电弧电压,提高焊接速度;b、大钝边尺寸,减小根部间隙;c、适当减小点固焊时焊点间距。2、气孔---产生原因:a、母材或焊丝上有油、锈、污、垢等;b、焊接场地空气流动大,不利于气体保护;c、焊接电弧过长,降低气体保护效果;d、喷嘴与工件距离过大,气体保护效果降低;e、焊接参数选择不当;f、重复起弧处产生气孔;g、保护气体纯度低,气体保护效果差;h、周围环境空气湿度大。防止措施:a、焊前仔细清理焊丝、焊件表面的油、污、锈、垢和氧化膜,采用含脱氧剂较高的焊丝;b、合理选择焊接场所;c、适当减小电弧长度;d、保持喷嘴与焊件之间的合理距离范围;e、尽量选择较粗的焊丝,同时增加工件坡口的钝边厚度,一方面可以允许使用大电流,公众号:焊王,另一方面也使焊缝金属中焊丝比例下降,这对降低气孔率是行之有效的;f、尽量不要在同一部位重复起弧,需要重复起弧时要对起弧处进行打磨或刮除;一道焊缝一旦起弧要尽量焊长些,不要随意断弧,以减少接头量,在接头处需要有一定焊缝重叠区;g、换保护气体;h、检查气流大小;i、预热母材;j、检查是否有漏气现象和气管损坏现象;k、在空气湿度较低时焊接,或采用加热系统。3、电弧不稳---产生原因:电源线连接、污物或者有风。防止措施:a、检查所有导电部分并使表面保持清洁;b、将接头处的脏物掉;c、尽量不要在能引起气流紊乱的地方进行焊接。4、焊缝成型差---产生原因:a、焊接规范选择不当;b、焊枪角度不正确;c、焊工操作不熟练;d、导电嘴孔径太大;e、焊丝、焊件及保护气体中含有水分。防止措施:a、反复调试选择合适的焊接规范;b、保持合适的焊枪倾角;c、选择合适的导电嘴孔径;d、焊前仔细清理焊丝、焊件,保证气体的纯度。5、未焊透---产生原因:a、焊接速度过快,电弧过长;b、坡口加工不当,装备间隙过小;c、焊接规范过小;d、焊接电流不稳定。防止措施:a、适当减慢焊接速度,压低电弧;b、适当减小钝边或增加根部间隙;c、增加焊接电流及电弧电压,保证母材足够的热输入能量;d、增加稳压电源装置e、细焊丝有助于提高熔深,粗焊丝提高熔敷量,应酌情选择。6、未熔合---产生原因:a、焊接部位氧化膜或锈迹未干净;b、热输入不足。防止措施:a、焊前清理待焊处表面b、提高焊接电流、电弧电压,减小焊接速度;c、对于厚板采用U型接头,而一般不采用V型接头。7、裂纹---产生原因:a、结构设计不合理,焊缝过于集中,造成焊接接头拘束应力过大b、熔池过大、过热、合金元素烧损多;c、焊缝末端的弧坑冷却快;d、焊丝成分与母材不匹配;e、焊缝深宽比过大。防止措施:a、正确设计焊接结构,合理布置焊缝,使焊缝尽量避开应力集中区,合理选择焊接顺序;b、减小焊接电流或适当增加焊接速度;c、收弧操作要正确,加入引弧板或采用电流衰减装置填满弧坑;d、正确选用焊丝。8、夹渣---产生原因:a、焊前清理不彻底;b、焊接电流过大,导致导电嘴局部熔化混入熔池而形成夹渣c、焊接速度过快。防止措施:a、加强焊前清理工作,多道焊时,每焊完一道同样要进行焊缝清理;b、在保证熔透的情况下,适当减小焊接电流,大电流焊接时导电嘴不要压太低;c、适当降低焊接速度,采用含脱氧剂较高的焊丝,提高电弧电压。9、咬边---产生原因:a、焊接电流太大,焊接电压太高;b、焊接速度过快,填丝太少;c、焊枪摆动不均匀。防止措施:a、适当的调整焊接电流和电弧电压;b、适当增加送丝速度或降低焊接速度;c、力求焊枪摆动均匀。10、焊缝污染---产生原因:a、不适当的保护气体覆盖;b、焊丝不洁;c、母材不洁。防止措施:a、检查送气软管是否有泄漏情况,是否有抽风,气嘴是否松动,保护气体使用是否正确;b、是否正确的储存焊接材料;c、在使用其它的机械清理前,先将油和油脂类物质掉;d、在使用不锈钢刷之前将氧化物掉。11、送丝性不良---产生原因:A、导电嘴与焊丝打火;b、焊丝磨损、喷弧;d、送丝软管太长或太紧;e、送丝轮不适当或磨损;f、焊接材料表面毛刺、划伤、灰尘和污物较多。防止措施:a、降低送丝轮张力,使用慢启动系统;b、检查所有焊丝接触表面情况并尽量减少金属与金属的接触面;c、检查导电嘴情况及送丝软管情况,检查送丝轮状况;d、检查导电嘴的直径大小是否匹配;e、使用耐磨材料以避免送丝过程中发生截断情况;f、检查焊丝盘磨损状况;g、选择合适的送丝轮尺寸,形状及合适的表面情况;h、选择表面质量较好的焊接材料。12、起弧不良---产生原因:a、接地不良;b、导电嘴尺寸不对;c、没有保护气体。防止措施:a、检查所有接地情况是否良好,使用慢启动或热起弧方式以方便起弧;b、检查导电嘴内空是否被金属材料堵塞;c、使用气体预清理功能;d、改变焊接参数。
1、合金铝板等铝合金型材的技术特点与优势:(1)合金铝板等铝合金型材技术特点:无烟镜面抛光具有无黄烟、无流痕、低成本、低消耗、低设备投入、高亮度、高稳定性、高功效、高成品率等特点,突破了传统抛光技术的瓶颈和缺陷,成功实现了11米长材化学抛光以及自动线化学抛光的规模化生产。无烟镜面抛光技术是普通三酸和电解抛光的升级换代技术,是合金铝板等铝合金型材化学抛光技术的发展方向。(2)合金铝板等铝合金型材技术优势如下:1)无黄烟:无烟镜面抛光从根本解决了三酸抛光产生大量黄烟的难题。可节约大量的环保处理成本。为化学抛光的广泛运用扫清了主要障碍。2)无流痕:无烟抛光技术彻底解决了抛光流痕的难题、并实现了11米长抛光材的全自动线规模生产,使抛光像碱蚀一样易于操作。3)高亮度:无烟抛光由于采用新的抛光成分,比三酸抛光、电解抛光的亮度提高20%~30%,是目前亮度*高的抛光技术。4)低消耗-无烟镜面抛光药剂的消耗可比电解抛光的消耗(500-700kg/t材)降低60%-70%。5)高成品率:无烟镜面抛光过程中几乎不产生缺陷,产品成品率极高。6)生产效率高:无烟抛光挂料而积大,每次可抛光多排;抛光无废品,生产效率至少是三酸抛光的2倍以上,是电解抛光的6-9倍。7)槽液稳定:无烟镜面抛光槽几乎不调槽,可长期稳定工作。为化学抛光铝材的大规模工业化、自动化生产铺平了道路。8)亮度稳定:不同批次生产抛光材,由于不调槽,所生产的抛光材亮度稳定。2、工艺漓程与操作要点分析:(1)槽位设置说明:1)无烟镜面抛光槽前是完全封闭的抽风墙,杜绝外界自然风降低抽风效率,利于阴雨天、浓雾天的全天候生产。2)无烟镜面抛光槽的宽度为1.6m以上,加强槽液吸收烟雾的缓冲能力,利于大规模批量生产。(2)槽液功能说明:1)除蜡除垢槽:本槽中盛一种新型弱碱性除蜡除垢剂,能去机械抛光蜡及残存的重油垢,不腐蚀铝合金。操作简单。2)无烟镜面抛光槽:本槽含有多种组分,富古强氧化剂,能对铝合金进行镜面抛光。与其他抛光技术相比,本槽具有如下特点:①绝无黄烟,亮度稳定:本槽添加有足够量的烟雾抑制剂,黄烟的分解被彻底抑制;由于强氧化剂分解较慢,浓度比三酸槽稳定,因此不同批次铝合金的亮度差别比三酸抛光要小得多。②亮度增加:化学抛光的亮度,陈了与磷酸浓度、硝酸浓度,温度有关外,还与抛光液的含水量有关。含水量越高,亮度越低;三酸抛光液中磷酸含量高达80%(磷酸的含水量为15%),相应抛光液水含量小低于12%;如此高的水含量必然降低抛光材的亮度。无烟镜面抛光液在制作过程中,经过长时间的高温浓缩,水含量水足5%,因此镜面抛光材的亮度明显提高。③可长时间滴流:考虑到化学抛光反应过于剧烈,铝合金离开槽液后,滴流时间不能超过20s,大量抛光液被带进水洗槽,造成抛光材成本过于昂贵。无烟镜面抛光液中添加有足够量的缓蚀剂,保护铝合金离开槽液后,可在空中按任意时间滴流而不花材,也没流痕。由此可节约抛光液70%以上。④自动除灰:铝合金不纯或抛光液老化时,铝材经三酸抛光后,表面往往有一层黑灰,一般方法很难除去,严重影响抛光材质量。无烟镜面抛光槽中,添加有除灰成分,可自动抛光灰。⑤成品率高:由于镜面抛光槽解决了色差、流痕、花材、抛光灰等问题,使得成品率大幅提高。从而降低了成本,提高了生产效率。3)保光氧化槽。设置本槽有两大目的:①预制化学氧化膜:保光氧化槽,能生成一定厚度的氧化膜,又能完全保留原有亮度;钢合金从镜面抛光到阳极氧化之前,可以过保光氧化槽,预制一定厚度的化学氧化膜,避免氧化之前在水洗槽中产生点蚀或花材,提高成品率,同时在进行阳极氧化时,减少氧化失光。②精除灰:抛光灰的来源有两种,一是铝合金中有夹杂,二是抛光液老化。抛光灰用一般方法很难,能严重影响抛光材的外观质量。尽管无烟镜面抛光槽中已添加有除灰剂,能绝大部分抛光灰,但仍可能有少量残留抛光灰。保光氧化槽能彻底清理抛光灰,从而保证抛光材质量。
说到船用铝板,大家*熟悉的要数5083铝板了。船用铝板是铝板产品研发应用的新兴领域,目前船板的生产能力已成为衡量铝板厂家综合实业的重要指标。那么,船舶制造厂家为何如此青睐5083铝板?5083铝板属于Al-Mg系合金,中等强度,具有耐蚀性好、焊接性优良、冷加工性较好的优势,广泛用于制造飞机油箱、油管、交通车辆、船舶钣金件、仪表、街灯支架、铆钉、五金制品、电器外壳等。在船舶制造领域,多采用5083H116/H321/H112状态的铝板,应用于船舶甲板、发动机台座、船侧、船底外板等部位。5083铝板满足船用铝板的选材要求:1、较高的比强度和比模量。船舶的结构强度和尺寸与材料的屈服强度和弹性模量密切相关,由于铝合金的弹性模量和密度大体相同,合金元素的添加也影响甚,因此在一定范围内提高屈服强度对减轻舰船结构有力。5083铝板属于中等强度,能同时具备优良的耐蚀性和可焊接性。2、焊接性优良。5083铝板具有良好的焊接抗裂性,在焊接时不容易出现裂纹现象。3、耐蚀性优良。耐蚀性能是船用合金的主要标志之一,5083铝板是典型的防锈铝板,耐腐性好,能适应恶劣的海洋环境,经久耐用。4、密度小。铝合金比重小,能减轻船板重量,节省能耗,增加载重。5、环保。铝合金不燃烧,遇火,而且回收利用率高,可循环再利用,环保性好。
通过温度控制提高挤压铝型材产量,通常,如果没有非预定的停机时间,那么*大产量主要决定于挤压速度,而后者受制于四个因素,其中三个固定不变而另一个则是可变的。 个因素是挤压机的挤压力,挤压力大的可在锭坯温度较低时顺利地挤压;第二个因素是模具设计,挤压时金属与模壁的摩擦通常可使通过的铝合金的温度上升35~62℃;第三个因素是被挤压合金的特性,是限制挤压速度的不可控制的因素,型材的出口温度一般不可超过540℃,否则,材料表面质量会下降,模痕明显加重,甚至出现粘铝、凹印、裂缝、撕裂等。*后一个因素是温度及其受控程度。如果铝型材挤压机的挤压力不够大,很难顺利挤压或甚至出现塞模现象而挤不动时,就可提高锭坯温度,但挤压速度应低些,以防材料的出口温度过高。每一个合金都有其特定的*优的挤压(锭坯)温度。生产实践证明,锭坯温度*好保持在430℃左右(挤压速度≥16mm/s时)。6063合金型材的出模温度不得超过500℃,6005合金的*高出口温度为512℃,6061合金的*好不大于525℃。出模温度的不大变化也会影响产品的产量与质量。挤压筒温度也是很重要的,特别应注意预热阶段的温度升高,应避免各层之间产生过大的热应力,*好是使挤压筒与衬套同时升高到工作温度。预热升温速度不得大于38℃/h。*好的预热规范是:升高到235℃,保温8h,继续升温到430℃,保温4h后,才投入工作。这样不但能保证内外温度均匀一致,而且有足够的时间一切内部热应力。当然在炉内加热挤压筒是*佳的预热方式。在挤压过程中,挤压筒温度应比锭坯温度低15~40℃。如果挤压速度过快,以致挤压筒温度上升到高于锭坯温度,就要设法使挤压筒温度下降,这不但是一件麻烦的工作,而且产量会下降。在生产速度上升过程中,有时受电偶控制的加热元件会被切断,可是挤压筒温度仍在上升。如果挤压筒温度高于470℃,挤压废品就会上升。应根据不同的合金确定理想的挤压筒温度。千万不要认为预热挤压筒是在浪费时间、消耗能源。某工厂为赶生产任务,一方面用内部电阻元件加热,另一方面又以液化气烧嘴加热。在这种情况,温度无法测量与控制,会产生巨大的热应力,内衬温度高,膨胀比外套的快,以致挤压筒裂开,并听到“炸裂”的声音。挤压轴在工作过程中会积蓄内应力,这种应力大到一定程度会产生疲劳裂纹,一旦受到非轴向的径向力作用就会断裂。因此,挤压轴的累计工作时间达到4500h后,*好进行一次应力处理,在430~480℃保温12h,然后随炉冷却到50℃以下。遗憾的是,我国很少有工厂照此处理。
生产优质表面建筑型材时,对挤压垫温度也应严格控制,以减少表面色调不一致废品量。固定挤压垫的质量比活动的好得多,能积聚更多的热量,因而能降低锭坯端头温度,能减少杂质进入型材内,有助于提高产量。美国卡斯图尔公司(Castool)采用压缩空气冷却挤压垫与挤压轴,使其温度降到50℃左右。模具温度对于获得高的产量起着重要的作用,一般不得低于430℃;另方面,也不得过高,否则,不但硬度可能下降,同时会产生氧化,主要在工作带。在模具加热过程中,应避免模具之间紧靠着,阻碍空气流通。*好采用带格的箱式加热炉,每个模放于一个单独的箱内。锭坯在挤压过程中的温度升高可达40℃左右或更高些,升高量主要决定于模具设计。为了获得*大产量,对各项温度决不可忽视,应记录各个温度并严加控制,以找出机台的*大产量与各项温度的关系。然后,铝型材挤压生产厂的员工都应牢记:温度的精密控制,对提高产量是至关重要的。
通过温度控制提高挤压铝型材产量,通常,如果没有非预定的停机时间,那么*大产量主要决定于挤压速度,而后者受制于四个因素,其中三个固定不变而另一个则是可变的。 个因素是挤压机的挤压力,挤压力大的可在锭坯温度较低时顺利地挤压;第二个因素是模具设计,挤压时金属与模壁的摩擦通常可使通过的铝合金的温度上升35~62℃;第三个因素是被挤压合金的特性,是限制挤压速度的不可控制的因素,型材的出口温度一般不可超过540℃,否则,材料表面质量会下降,模痕明显加重,甚至出现粘铝、凹印、裂缝、撕裂等。*后一个因素是温度及其受控程度。如果铝型材挤压机的挤压力不够大,很难顺利挤压或甚至出现塞模现象而挤不动时,就可提高锭坯温度,但挤压速度应低些,以防材料的出口温度过高。每一个合金都有其特定的*优的挤压(锭坯)温度。生产实践证明,锭坯温度*好保持在430℃左右(挤压速度≥16mm/s时)。6063合金型材的出模温度不得超过500℃,6005合金的*高出口温度为512℃,6061合金的*好不大于525℃。出模温度的不大变化也会影响产品的产量与质量。挤压筒温度也是很重要的,特别应注意预热阶段的温度升高,应避免各层之间产生过大的热应力,*好是使挤压筒与衬套同时升高到工作温度。预热升温速度不得大于38℃/h。*好的预热规范是:升高到235℃,保温8h,继续升温到430℃,保温4h后,才投入工作。这样不但能保证内外温度均匀一致,而且有足够的时间一切内部热应力。当然在炉内加热挤压筒是*佳的预热方式。在挤压过程中,挤压筒温度应比锭坯温度低15~40℃。如果挤压速度过快,以致挤压筒温度上升到高于锭坯温度,就要设法使挤压筒温度下降,这不但是一件麻烦的工作,而且产量会下降。在生产速度上升过程中,有时受电偶控制的加热元件会被切断,可是挤压筒温度仍在上升。如果挤压筒温度高于470℃,挤压废品就会上升。应根据不同的合金确定理想的挤压筒温度。千万不要认为预热挤压筒是在浪费时间、消耗能源。某工厂为赶生产任务,一方面用内部电阻元件加热,另一方面又以液化气烧嘴加热。在这种情况,温度无法测量与控制,会产生巨大的热应力,内衬温度高,膨胀比外套的快,以致挤压筒裂开,并听到“炸裂”的声音。挤压轴在工作过程中会积蓄内应力,这种应力大到一定程度会产生疲劳裂纹,一旦受到非轴向的径向力作用就会断裂。因此,挤压轴的累计工作时间达到4500h后,*好进行一次应力处理,在430~480℃保温12h,然后随炉冷却到50℃以下。遗憾的是,我国很少有工厂照此处理。
生产优质表面建筑型材时,对挤压垫温度也应严格控制,以减少表面色调不一致废品量。固定挤压垫的质量比活动的好得多,能积聚更多的热量,因而能降低锭坯端头温度,能减少杂质进入型材内,有助于提高产量。美国卡斯图尔公司(Castool)采用压缩空气冷却挤压垫与挤压轴,使其温度降到50℃左右。模具温度对于获得高的产量起着重要的作用,一般不得低于430℃;另方面,也不得过高,否则,不但硬度可能下降,同时会产生氧化,主要在工作带。在模具加热过程中,应避免模具之间紧靠着,阻碍空气流通。*好采用带格的箱式加热炉,每个模放于一个单独的箱内。锭坯在挤压过程中的温度升高可达40℃左右或更高些,升高量主要决定于模具设计。为了获得*大产量,对各项温度决不可忽视,应记录各个温度并严加控制,以找出机台的*大产量与各项温度的关系。然后,铝型材挤压生产厂的员工都应牢记:温度的精密控制,对提高产量是至关重要的。