过电压保护器是限制雷电过电压和操作过电压的一种先进的保护电器,过电压保护器为一种新型的过电压保护器,主要用于保护发电机,变压器,真空开关,母线,电动机等电气设备的绝缘免受过电压的损害,分类按照结构特征部分1。
无间隙:功能部分为非线性氧化锌电阻片2,串联间隙:功能部分为串联间隙及氧化锌电阻片按照外形结构:F,复合绝缘外套T,T型底座:相间距离:包括85,131,150,200,310,630等W1,户外用,带电缆W2。
户外用,不带电缆按照保护对象:A,电机型:B,电站型:(并通用于常规配电领域)C,电容器型:特征电压:包括3.8KV,7.6KV,12.7KV,42KV过电压保护器有一种新型产品,即三相组合式过电压保护器。
过电压保护器是一种不但可以限制大气过电压和各种真空开关引起的操作过电压,而且可以保护相间过电压的装置,它的应用很广泛,适用于不同型号的KYN,XGN,GBC,JYN,GZS等35KV及以下成套开关柜配套。
也可直接使用于小型箱式变电站内,广泛用于电力,冶金,化工,煤炭,轻工,建筑,电气化铁道等行业,那过电压保护器是如何工作的呢,过电压保护器选用阻燃,耐老化的硅橡胶做外壳材料,从内部引出四根硅橡胶高压电缆和氧化锌阀片整体硫化一次模压成形。
除四个线鼻子为裸导体外,其他部分被绝缘体封闭,过电压保护器采用放电间隙给氧化锌阀片分压的方式,降低产生的操作冲击保护残压,实现对操作过电压的保护,而且过电压保护器接入电网后,有利于破坏谐振条件,电阻产生阻尼震荡。
有利于降低谐振过电压幅值,过电压保护器相间过压保护原理:过电压保护器当A,B,C三相中,任意两相发生过电压时,P1,P2,P3中保护单元中的相应两相则通过各自的间隙组件两两并联后,再通过P4放电保护,过电压保护器的氧化锌阀片导通限压。
过电压消失后,因氧化锌阀片的泄露电流很小,放电间隙组件自动恢复,过电压保护器相对地过压保护原理:当A,B,C三相中,任意一相与地发生过电压时,P1,P2,P3保护单元中的相应一相和接地相P4之间通过各自的间隙组件串联放电保护。
线路过电压保护器是指保护高空线路的设备,因雷击架空线路引起的直击雷电过电压或感应过电压极易导致绝缘子闪络或击穿,形成的工频续流,高温电弧瞬间熔断导线,为了防止这一事故,需要在架空线路上安装线路过电压保护器。
.避雷器绝缘电阻的测量
绝缘电阻的测量,对FS型避雷器而言,主要是检查密封情况,若密封不严必然会引起内部受潮,因而使绝缘电阻明显下降。按预试规程要求,测量时应试验2500V兆欧表进行,测得其绝缘电阻应不低于2500MΩ。测试前将氧化锌避雷器瓷套表面擦干净,否则会因外套表面泄漏电流而影响测试的准确性。为此,在进行测试前需用吸水性好的干净布将瓷套表面擦干净,用细金属线在外套靠前个伞裙下部绕一圈再接到兆欧表“屏蔽”接线柱上以影响。在测试中兆欧表与避雷器连接线要尽量短,并保证电气接触良好,测试时兆欧表应水平放置,摇速均匀,并以每分钟120转为宜,以取得良好的测量效果。 防雷器价格对FZ型避雷器而言,除检查内部是否受潮外,还要检查并联电阻是否断裂、老化,若并联电阻老化、断裂,因接触不良,将使绝缘电阻增大。为确保测量值得准确,应测量二次并比较数据是否有变化。测量应使用同一电压等级的同一块兆欧表进行测量,否则无法比较。
2.直流1毫安参考电压试验
测试时在氧化锌避雷器两端施加0.75倍1毫安直流电压(直流电压脉动率不大于±1.5%),当通过避雷器的电流稳定在1毫安时。避雷器两端的电压应不小于25千伏。
3.直流泄漏电流试验
测试时在避雷器两端施加0.75倍1毫安直流电压后,通过氧化锌避雷器的泄漏电流应不大于50μA。在测试过程中,当泄漏电流达到30μA后还要继续升高电压,这时泄漏电流会剧增,此时应缓慢升高电压,如升压过快测量会不准确。为防止瓷套表面泄漏电流的影响,测试前应使用吸水性好的布将瓷套外表面擦干净,以影响。
4.带并联电阻避雷器电导电流的测量
并联电阻避雷器型号测量带的电导电流使用的安表,其表的准确度应不低于1.5级,连接导线要粗且短,以减小导线电阻对测量的影响。测量时还要注意电晕电流及高电压周围杂散电容的影响。不宜用静电电压表测量。测试设备要远离容易产生干扰磁场的设备,或设置屏蔽措施。 测量电导电流时,其直流试验电压的施加应从足够低的数值开始然后缓慢升高,分段施加电压并分段读取电导电流值。待试验电压保持在规定时间后,如安表指针没大摆动,其显示值即为该电压的电导电流值。 如果并联电阻老化、接触不良,则电导电流明显下降,若并联电阻断裂,则电导电流降到零。假如并联电阻本身进水受潮,电导电流会急剧增大,一般可达1000μA以上。 为确保高压避雷器测试数的、准确,还要对不同温度下测量的电导电流值进行比较,并将它们换算到同一温度的电导电流值。经验证明,温度每升高10℃,电导电流则大约增大3%~5%。过电压保护器试验原理
为防止有意外因素对产品的损坏,在避雷器投运之前,应进行试验及定期检测。
以满足用户的不同需求。三相组合式过电压保护器分为无间隙型和有串联间隙型,使用上的区别为:对无间隙型过电压保护器而言,只要系统上有过
电压,都能很好的吸收和抑制;而有间隙型过电压保护器,只有系统上过电压的能量达到击穿过电压保护器中串联间隙而使其放电时,有间隙型过电压保护器才会动作。所以在选型上建议用户:常规情况下选择无间隙型过电压保护器,系统扰动电压过大或开关频繁分合的场所选择有间隙型过电压保护器为宜。氧化锌避雷器和阻容吸收器保护操作过电压的作用比较1.氧化锌避雷器以限幅为主,只治不防。而阻容吸收器利用电容吸收能量,使过电压不超
过允许值,并利用电阻的阻尼作用,使振荡迅速衰减,以为主,标本兼治。2.无间隙氧化锌避雷器用于中性点不接地系统损坏率高。有间隙氧化锌避雷器放电电压高,与电动机绝缘不配合。而阻容吸收器则不受中性点接地方式的限制,还可保证与电动机绝缘水平相配合。3.操作过电压的振荡频率高达105~106Hz,对电动机和变压器的危害极大。同时使断路器容易发生重燃。对此,避雷器不能改变振荡频率,而阻容吸收器因为电容增大
,将会使振荡频率大大下降,降低电机绕组的电位梯度,并可减少断路器重燃几率。4.由于阀片响应速度关系,过电压波头时间越短,氧化锌避雷器的残压就越高,陡波冲击下的残压比操作冲击电流下的残压要高出20~35%,这使得与电动机耐受电压之间的配合极为困难。截流过电压和重燃过电压类似陡波,波头时间不足1秒,会使氧化锌避雷器保护性能变差。而阻容吸收器还可延缓波头时间,降低陡度。氧化锌避雷器为单相连接时,不能保
护相间过电压。真空断路器引起的操作过电压中,相间过电压要比相对地过电压高出1/3~1/2。“专业防雷”为安防系统做的感应雷防护设计,突出特点就是“接地泄放雷电流”,这恰恰反映出他们对雷电感应电动势本质的错误认识,线缆接收的雷电感应电动势,与大地没有必然联系,接地不可能有效泄放雷电感应,我曾质疑过“专业防雷”:接地线上的雷电感应电动势,你又怎么泄放、向哪里泄放呢?人为制造多点接地,通过地环路又引来地
电位,又叫“浪涌电压”,再用他们的“浪涌保护器”来抑制浪涌,安防防雷变成了“花钱买隐患”。这就要是“专业防雷”把安防行业开发成“肥肉市场”的真实目的和做法。雷电电磁感应,并不像“专业防雷”描述的那么强大、吓人,弱电系统防感应雷,只需在设备输出或输入端口,设置“保护电路”就可以有效解决,本文不详细探讨了。摄像机立杆避雷针化设计,安防行业许多工程的防直击雷就是照此设计的,一个多次被雷劈了的案例就是
这么做的。然而这种看似可以很好的防雷设计在不少工程中运用中并不防雷,不仅造成了设备的损害,甚至还影响到工程的整体质量。工程应用实时解析探讨防雷器防护雷击效果许多“专业防雷厂家”介绍,要在立杆避雷针摄像机端和主机视频输入点安装他们的“防雷器”或浪涌保护器。
在接地装置上就产生压降,该压降通过配变外壳同时作用在低压侧绕组的中性点处,因此低压侧绕组中流过的雷电流将使高压侧绕组按变比感应出很高的电势(可达1000kV),该电势将与高压侧绕组的雷电压叠加,造成高压侧绕组中性点电位升高。
击穿中性点附近的绝缘,如果低压侧安装了MOA,当高压侧MOA放电使接地装置的电位升高到一定值时,低压侧MOA开始放电,使低压侧绕组出线端与其中性点及外壳的电位差减小,这样就能或减小[反变换"电势的影响。
3.MOA接地线应接至配变外壳MOA的接地线应直接与配电变压器外壳连接,然后外壳再与大地连接,那种将避雷器的接地线直接与大地连接,然后再从接地桩子上另引一根接地线至变压器外壳的作法是错误的,另外,避雷器的接地线要尽可能缩短。
在日常运行中,应检查避雷器的瓷套表面的污染状况,因为当瓷套表面受到严重污染时,将使电压分布很不均匀,在有并联分路电阻的避雷器中,当其中一个元件的电压分布增大时,通过其并联电阻中的电流将显著增大,则可能烧坏并联电阻而引起故障。
此外,也可能影响阀型避雷器的灭弧性能,因此,当避雷器瓷套表面严重污秽时,必须及时清扫,检查避雷器的引线及接地引下线,有烧伤痕迹和断股现象以及放电记录器是否烧通过这方面的检查,容易发现避雷器的隐形缺陷检查避雷器上端引线处密封是否良好。
避雷器密封不良会进水受潮易引起事故,因而应检查瓷套与法兰连接处的水泥接合缝是否严密,对10千伏阀型避雷器上引线处可加装防水罩,以免雨水渗入检查避雷器与被保护电气设备之间的电气距离是否符合要求,避雷器应尽量靠近被保护的电气设备。
避雷器在雷雨后应检查记录器的动作情况检查泄漏电流,工频放电电压大于或小于标准值时,应进行检修和试验放电记录器动作次数过多时,应进行检修瓷套及水泥接合处有裂纹法兰盘和橡皮垫有脱落时,应进行检修,。